Affiliation:
1. National Institute of Technology Raipur, India
Abstract
Machine learning techniques such as artificial neural network (ANN), support vector machine (SVM), radial basis function network (RBFN), random forest (RF), naive Bayes classifier, etc. have gained much attention in recent years due to their widespread applications in diverse fields. This chapter is focused on providing a comprehensive insight of various techniques employed for key areas of medical image processing and analysis. Different applications covered in this chapter include feature extraction, feature selection, and cancer classification in medical images. The authors present current practices and evaluation measures used for objective evaluation of different machine learning methods in context to above-mentioned applications. Various factors associated with acceptance/rejection of such automated systems by medical research community are discussed. The authors also discuss how the interaction between automated analysis systems and medical professionals can be improved for its acceptance in clinical practice. They conclude the chapter by presenting research gaps and future challenges.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献