Optimal Robot Path Planning With Cellular Neural Network

Author:

Zhong Yongmin1,Shirinzadeh Bijan2,Yuan Xiaobu3

Affiliation:

1. Curtin University of Technology, Australia

2. Monash University, Australia

3. University of Windsor, Canada

Abstract

This paper presents a new methodology based on neural dynamics for optimal robot path planning by drawing an analogy between cellular neural network (CNN) and path planning of mobile robots. The target activity is treated as an energy source injected into the neural system and is propagated through the local connectivity of cells in the state space by neural dynamics. By formulating the local connectivity of cells as the local interaction of harmonic functions, an improved CNN model is established to propagate the target activity within the state space in the manner of physical heat conduction, which guarantees that the target and obstacles remain at the peak and the bottom of the activity landscape of the neural network. The proposed methodology cannot only generate real-time, smooth, optimal, and collision-free paths without any prior knowledge of the dynamic environment, but it can also easily respond to the real-time changes in dynamic environments. Further, the proposed methodology is parameter-independent and has an appropriate physical meaning.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3