Affiliation:
1. Suez Canal University, Egypt
Abstract
Differential evolution algorithm (DE) is one of the most applied meta-heuristics algorithm for solving global optimization problems. However, the contributions of applying DE for large-scale global optimization problems are still limited compared with those problems for low dimensions. In this chapter, a new differential evolution algorithm is proposed in order to solve large-scale optimization problems. The proposed algorithm is called differential evolution with space partitioning (DESP). In DESP algorithm, the search variables are divided into small groups of partitions. Each partition contains a certain number of variables and this partition is manipulated as a subspace in the search process. Searching a limited number of variables in each partition prevents the DESP algorithm from wandering in the search space especially in large-scale spaces. The proposed algorithm is investigated on 15 benchmark functions and compared against three variants DE algorithms. The results show that the proposed algorithm is a cheap algorithm and obtains good results in a reasonable time.