Improving the Classification Accuracy of Multidimensional Overlapping Objects Based on Neuro-Fuzzy Analysis of Generalized Patterns

Author:

Gorbachev Sergey Viktorovich1,Abramova Tatyana Viktorovna1

Affiliation:

1. National Research Tomsk State University, Russia

Abstract

To improve the classification accuracy of multidimensional overlapping objects, a new hybrid neuro-fuzzy FCNN-SOM-FMLP network, combining the fuzzy cell neural network of Kohonen (FCNN-SOM) and the fuzzy multilayer perceptron (FMLP), and the algorithms for its training are proposed. This combination allows for clustering of generalized intersecting patterns (the extensional approach) and training the classification network basing on the identification of integrated pattern characteristics in the isolated clusters (intentional approach). The new FCNN-SOM-FMLP architecture features a high degree of self-organization of neurons, an ability to manage selectively individual neuronal connections (to solve the problem of “dead” neurons), the high flexibility, and the ease of implementation. The experimental results show the temporal efficiency of algorithms of self-organization and training and the improvement of the separating properties of the network in the case of overlapping clusters. Calculated technological and economic generalized values of countries.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3