Privacy-Preserving Hybrid K-Means

Author:

Gao Zhiqiang1,Sun Yixiao2,Cui Xiaolong1,Wang Yutao1,Duan Yanyu1,Wang Xu An1

Affiliation:

1. Engineering University of PAP, China

2. Official College of PAP, China

Abstract

This article describes how the most widely used clustering, k-means, is prone to fall into a local optimum. Notably, traditional clustering approaches are directly performed on private data and fail to cope with malicious attacks in massive data mining tasks against attackers' arbitrary background knowledge. It would result in violation of individuals' privacy, as well as leaks through system resources and clustering outputs. To address these issues, the authors propose an efficient privacy-preserving hybrid k-means under Spark. In the first stage, particle swarm optimization is executed in resilient distributed datasets to initiate the selection of clustering centroids in the k-means on Spark. In the second stage, k-means is executed on the condition that a privacy budget is set as ε/2t with Laplace noise added in each round of iterations. Extensive experimentation on public UCI data sets show that on the premise of guaranteeing utility of privacy data and scalability, their approach outperforms the state-of-the-art varieties of k-means by utilizing swarm intelligence and rigorous paradigms of differential privacy.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3