An Intelligent Traffic Engineering Method Over Software Defined Networks for Video Surveillance Systems Based on Artificial Bee Colony

Author:

Mohammadi Reza1,Javidan Reza1

Affiliation:

1. Shiraz University of Technology, Iran

Abstract

In applications such as video surveillance systems, cameras transmit video data streams through network in which quality of received video should be assured. Traditional IP based networks cannot guarantee the required Quality of Service (QoS) for such applications. Nowadays, Software Defined Network (SDN) is a popular technology, which assists network management using computer programs. In this paper, a new SDN-based video surveillance system infrastructure is proposed to apply desire traffic engineering for practical video surveillance applications. To keep the quality of received videos adaptively, usually Constraint Shortest Path (CSP) problem is used which is a NP-complete problem. Hence, heuristic algorithms are suitable candidate for solving such problem. This paper models streaming video data on a surveillance system as a CSP problem, and proposes an artificial bee colony (ABC) algorithm to find optimal solution to manage the network adaptively and guarantee the required QoS. The simulation results show the effectiveness of the proposed method in terms of QoS metrics.

Publisher

IGI Global

Reference34 articles.

1. An Artificial Bee Colony (ABC) Algorithm for Efficient Partitioning of Social Networks

2. A roadmap for traffic engineering in SDN-OpenFlow networks

3. Cisco. (2014, August 10). video surveillance 3421V IP camera data sheet. Retrieved from http://www.cisco.com/c/en/us/products/collateral/physical-security/video-surveillance-3000-series-ip-cameras/datasheet_c78-723167.html

4. Supporting real-time applications in an Integrated Services Packet Network

5. Using Mininet for emulation and prototyping Software-Defined Networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3