Default Probability Prediction of Credit Applicants Using a New Fuzzy KNN Method With Optimal Weights

Author:

Keramati Abbas1,Yousefi Niloofar2,Omidvar Amin3

Affiliation:

1. University of Tehran, Iran

2. University of Central Florida, USA

3. Amirkabir University of Technology, Iran

Abstract

Credit scoring has become a very important issue due to the recent growth of the credit industry. As the first objective, this chapter provides an academic database of literature between and proposes a classification scheme to classify the articles. The second objective of this chapter is to suggest the employing of the Optimally Weighted Fuzzy K-Nearest Neighbor (OWFKNN) algorithm for credit scoring. To show the performance of this method, two real world datasets from UCI database are used. In classification task, the empirical results demonstrate that the OWFKNN outperforms the conventional KNN and fuzzy KNN methods and also other methods. In the predictive accuracy of probability of default, the OWFKNN also show the best performance among the other methods. The results in this chapter suggest that the OWFKNN approach is mostly effective in estimating default probabilities and is a promising method to the fields of classification.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3