Statistical Features for Extractive Automatic Text Summarization

Author:

Meena Yogesh Kumar1,Gopalani Dinesh1

Affiliation:

1. MNIT Jaipur, India

Abstract

Automatic Text Summarization (ATS) enables users to save their precious time to retrieve their relevant information need while searching voluminous big data. Text summaries are sensitive to scoring methods, as most of the methods requires to weight features for sentence scoring. In this chapter, various statistical features proposed by researchers for extractive automatic text summarization are explored. Features that perform well are termed as best features using ROUGE evaluation measures and used for creating feature combinations. After that, best performing feature combinations are identified. Performance evaluation of best performing feature combinations on short, medium and large size documents is also conducted using same ROUGE performance measures.

Publisher

IGI Global

Reference56 articles.

1. Differential evolution cluster-based text summarization methods

2. Text summarization features selection method using pseudo Genetic-based model

3. A new sentence similarity measure and sentence based extractive technique for automatic text summarization

4. Baldwin, B., & Morton, T. S. (1998). Dynamic co reference based summarization. In Proceedings of the Third Conference on Empirical Methods in Natural Language Processing (EMNLP-3).

5. Using Lexical Chains for Text Summarization;R.Barzilay;Proceedings of the ACL/EACL’97 Workshop on Intelligent Scalable Text Summarization,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3