Optimization of Evolutionary Algorithm Using Machine Learning Techniques for Pattern Mining in Transactional Database

Author:

Logeswaran K. 1,Suresh P. 1,Savitha S. 2,Prasanna Kumar K. R. 1

Affiliation:

1. Kongu Engineering College, India

2. K. S. R. College of Engineering, India

Abstract

In recent years, the data analysts are facing many challenges in high utility itemset (HUI) mining from given transactional database using existing traditional techniques. The challenges in utility mining algorithms are exponentially growing search space and the minimum utility threshold appropriate to the given database. To overcome these challenges, evolutionary algorithm-based techniques can be used to mine the HUI from transactional database. However, testing each of the supporting functions in the optimization problem is very inefficient and it increases the time complexity of the algorithm. To overcome this drawback, reinforcement learning-based approach is proposed for improving the efficiency of the algorithm, and the most appropriate fitness function for evaluation can be selected automatically during execution of an algorithm. Furthermore, during the optimization process when distinct functions are skillful, dynamic selection of current optimal function is done.

Publisher

IGI Global

Reference33 articles.

1. Fast Algorithms for Mining Association Rules.;R.Agrawal;Proc. 20th Int’l Conf. Very Large Data Bases (VLDB),1994

2. Efficient Tree Structures for High Utility Pattern Mining in Incremental Databases

3. Efficient data mining for path traversal patterns

4. Mining gene expression databases for association rules

5. UP-Hist Tree: An Efficient Data Structure for Mining High Utility Patterns from Transaction Databases.;S.Dawar;Proc. of the 19th International Database Engineering & Applications Symposium (IDEAS ’15),2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3