Cloud-Based Geo-Information Infrastructure to Support Agriculture Activity Monitoring

Author:

Akhter Shamim1,Aida Kento2

Affiliation:

1. East West University, Bangladesh

2. NII, Japan

Abstract

Agriculture activity monitoring needs to deal with large amount of data originated from various organizations (weather station, agriculture repositories, field management, farm management, universities, etc.) and mass people. Therefore, a scalable environment with flexible information access, easy communication and real time collaboration from all types of computing devices, including mobile handheld devices as smart phones, PDAs and iPads, Geo-sensor devices, and etc. are essential. It is mandatory that the system must be accessible, scalable, and transparent from location, migration and resources. In addition, the framework should support modern information retrieval and management systems, unstructured information to structured information processing (IBM Info Stream, text analytic, pig & hive, etc.), task prioritization, task distribution (Hadoop), workflow and task scheduling system, processing power and data storage (Amazon S3 and Google BigTable). Thus, High Scalability Computing (HSC) or Cloud based system can be a prominent and convincing solution for this circumstance.

Publisher

IGI Global

Reference28 articles.

1. GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework;S.Akhter;Proceeding of ISPRS 2010,2010

2. Porting a GRASS raster module to distributed computing. Examples for MPI and Ninf-G;S.Akhter;OSGeo Journal,2007

3. Distributed Pixel Method to speed-up the RS data assimilation of SWAP model;S.Akhter;Proceedings of the MapAsia conference,2005

4. Exploring Strategies for Parallel Computing of RS Data Assimilation with SWAP-GA

5. Akhter, S., Jangjaimon, I., Chemin, Y., Uthayopas, P., & Honda, K. (2006). Development of a GRIDRPC tool for Satellite Images Parallel Data Assimilation in Agricultural Monitoring. International Journal of Geoinformatics, 2(3).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3