Investigation on Improved-Durability Thermal Barrier Coatings

Author:

Hassanzadeh Mohammad1,Saremi Mohsen1,Valefi Zia2,Pakseresht Amir Hossein3

Affiliation:

1. University of Tehran, Iran

2. Malek Ashtar University of Technology, Iran

3. University of Tehran, Iran & Materials and Energy Research Center, Iran

Abstract

Concurrent with the development of new generation of gas turbines, many attempts have been made to introduce advanced thermal barrier coatings with lower thermal conductivity and higher temperature stability. Most of the research to improve TBCs performance are based on two general approaches: structural modifications and chemical modifications. In most cases, the improvements in some properties are at the expense of loss of some other properties. Changing in the TBCs architecture and the application of multilayer coatings, consisting of layers with engineered properties based on the requirements, is a solution to achieve a combination of desired properties. In all of these development methods it is to be understood that the principle is reducing the possibility of formation of cracks, but, once formed, all such cracks can grow under and thermal cycles and eventually lead to coating delamination and spallation. Self-healing is the most precious phenomenon to overcome this problem.

Publisher

IGI Global

Reference63 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3