A Soft Computing Approach to Customer Segmentation

Author:

Hiziroglu Abdulkadir1

Affiliation:

1. Yildirim Beyazit University, Turkey

Abstract

There are a number of traditional models designed to segment customers, however none of them have the ability to establish non-strict customer segments. One crucial area that can meet this requirement is known as soft computing. Although there have been studies related to the usage of soft computing techniques for segmentation, they are not based on the effective two-stage methodology. The aim of this study is to propose a two-stage segmentation model based on soft computing using the purchasing behaviours of customers in a data mining framework and to make a comparison of the proposed model with a traditional two-stage segmentation model. Segmentation was performed via neuro-fuzzy two stage-clustering approach for a secondary data set, which included more than 300,000 unique customer records, from a UK retail company. The findings indicated that the model provided stronger insights and has greater managerial implications in comparison with the traditional two-stage method with respect to six segmentation effectiveness indicators.

Publisher

IGI Global

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3