Visual and LIDAR Data Processing and Fusion as an Element of Real Time Big Data Analysis for Rail Vehicle Driver Support Systems

Author:

Selver Alper M.1,Ataç Enes1,Belenlioglu Burak2,Dogan Sinan2,Zoral Yesim E.1

Affiliation:

1. Dokuz Eylul University, Turkey

2. Kentkart, Turkey

Abstract

This chapter reviews the challenges, processing and analysis techniques about visual and LIDAR generated information and their potential use in big data analysis for monitoring the railway at onboard driver support systems. It surveys both sensors' advantages, limitations, and innovative approaches for overcoming the challenges they face. Special focus is given to monocular vision due to its dominant use in the field. A novel contribution is provided for rail extraction by utilizing a new hybrid approach. The results of this approach are used to demonstrate the shortcomings of similar strategies. To overcome these disadvantages, dynamic modeling of the tracks is considered. This stage is designed by statistically quantifying the assumptions about the track curvatures presumed in current railway extraction techniques. By fitting polynomials to hundreds of manually delineated video frames, the variations of polynomial coefficients are analyzed. Future trends for processing and analysis of additional sensors are also discussed.

Publisher

IGI Global

Reference107 articles.

1. Design and Implementation of Context Aware Applications With Wireless Sensor Network Support in Urban Train Transportation Environments

2. Alastairfrance1989. (2011, May 26). Railway Tunnel- LIDAR [YouTube video]. Retrieved from https://www.youtube.com/watch?v=gJi69BTSbeQ

3. Laser-based obstacle detection at railway level crossings.;V.Amaral;Journal of Sensors,2016

4. Near-Miss Event Detection at Railway Level Crossings

5. Image-based Subway Security System by Histogram Projection Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3