Affiliation:
1. Dokuz Eylul University, Turkey
2. Kentkart, Turkey
Abstract
This chapter reviews the challenges, processing and analysis techniques about visual and LIDAR generated information and their potential use in big data analysis for monitoring the railway at onboard driver support systems. It surveys both sensors' advantages, limitations, and innovative approaches for overcoming the challenges they face. Special focus is given to monocular vision due to its dominant use in the field. A novel contribution is provided for rail extraction by utilizing a new hybrid approach. The results of this approach are used to demonstrate the shortcomings of similar strategies. To overcome these disadvantages, dynamic modeling of the tracks is considered. This stage is designed by statistically quantifying the assumptions about the track curvatures presumed in current railway extraction techniques. By fitting polynomials to hundreds of manually delineated video frames, the variations of polynomial coefficients are analyzed. Future trends for processing and analysis of additional sensors are also discussed.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献