Early Diagnostics Model for Dengue Disease Using Decision Tree-Based Approaches

Author:

Gambhir Shalini1,Kumar Yugal2,Malik Sanjay1,Yadav Geeta3,Malik Amita4

Affiliation:

1. SRM University, India

2. Jaypee University of Information Technology, India

3. Manav Bharti University, India

4. Deenbandhu Chhotu Ram University of Science and Technology, India

Abstract

Classification schemes have been applied in the medical arena to explore patients' data and extract a predictive model.This model helps doctors to improve their prognosis, diagnosis, or treatment planning processes.The aim of this work is to utilize and compare different decision tree classifiers for early diagnosis of Dengue. Six approaches, mainly J48 tree, random tree, REP tree, SOM, logistic regression, and naïve Bayes, have been utilized to study real-world Dengue data collected from different hospitals in the Delhi, India region during 2015-2016. Standard statistical metrics are used to assess the efficiency of the proposed Dengue disease diagnostic system, and the outcomes showed that REP tree is best among these classifiers with 82.7% efficient in supplying an exact diagnosis.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3