Affiliation:
1. Nuclear Power Institute of China, China
2. China Nuclear Energy Industry Corp., China
Abstract
This chapter is mainly focused on illustrating some introductory progress on thermal hydraulic issues of supercritical water, including heat transfer characteristics, pressure loss characteristics, flow stability issues and numerical method. These works are mainly performed in Nuclear Power Institute of China (NPIC) these years, to give a basic idea of elementary but important topics in this area. An analytical method was proposed up to predict the heat transfer coefficient and friction coefficient based on the two-layer wall function. Flow instability experiments have been carried out in a two-parallel-channel system with supercritical water, aiming to provide an up-to-date knowledge of supercritical flow instability phenomena and initial validation data for numerical analysis. An in-house code has been developed in NPIC in order to better utilize and further expand the experimental results on supercritical flow instability. At last, some future research directions are suggested for reference.