Application of Nanocompounds for Sustainable Agriculture System

Author:

Khati Priyanka1,Gangola Saurabh1,Bhatt Pankaj2,Kumar Rajeev1,Sharma Anita1

Affiliation:

1. G. B. Pant University of Agriculture and Technology, India

2. Dolphin (P.G) Institute of Biomedical and Natural Sciences, India

Abstract

Agriculture is one of the major determining forces for the economy of India. The burgeoning population also puts more pressure of the agriculture system. To meet the requirement for future population with little arable land and limited agricultural production, doubling of crop yields is required. Development of such production systems which depend on renewable resources is an urgent requirement for sustainable agriculture. New technologies are also required to be tested and tried for the improvement of the crop production system. Nanotechnology in agriculture system is the recent hope to make sustainable agriculture a success. A high proportion of the atoms in a nanoparticle are present on the surface of a nanoparticle which accounts for higher reactivity compared with particles of macrosize. On the other side, toxicity is also a considerable concern, but using nontoxic nanoparticles like nanozeolite, nanochitosan, and nanoclay is safe. These nanocompounds show advantages in crop production without harming the soil system.

Publisher

IGI Global

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial Action on Degradation of Pesticides;Microbial Technology for Sustainable Environment;2021

2. Microbial Mediated Natural Farming for Sustainable Environment;Microbial Technology for Sustainable Environment;2021

3. Insights into the Rhizospheric Microbes and Their Application for Sustainable Agriculture;Microbial Technology for Sustainable Environment;2021

4. Methods of Strain Improvement for Crop Improvement;Microbial Technology for Sustainable Environment;2021

5. An Endophytic Bacterial Approach: A Key Regulator of Drought Stress Tolerance in Plants;Microbial Technology for Sustainable Environment;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3