Visualization Tools for Big Data Analytics in Quantitative Chemical Analysis

Author:

Dumancas Gerard G.1,Bello Ghalib A.2,Hughes Jeff3,Murimi Renita4,Viswanath Lakshmi Chockalingam Kasi4,Orndorff Casey O'Neal1,Dumancas Glenda Fe1,O'Dell Jacy D.4

Affiliation:

1. Louisiana State University – Alexandria, USA

2. Icahn School of Medicine at Mount Sinai, USA

3. RMIT University, Australia

4. Oklahoma Baptist University, USA

Abstract

Modern instruments have the capacity to generate and store enormous volumes of data and the challenges involved in processing, analyzing and visualizing this data are well recognized. The field of Chemometrics (a subspecialty of Analytical Chemistry) grew out of efforts to develop a toolbox of statistical and computer applications for data processing and analysis. This chapter will discuss key concepts of Big Data Analytics within the context of Analytical Chemistry. The chapter will devote particular emphasis on preprocessing techniques, statistical and Machine Learning methodology for data mining and analysis, tools for big data visualization and state-of-the-art applications for data storage. Various statistical techniques used for the analysis of Big Data in Chemometrics are introduced. This chapter also gives an overview of computational tools for Big Data Analytics for Analytical Chemistry. The chapter concludes with the discussion of latest platforms and programming tools for Big Data storage like Hadoop, Apache Hive, Spark, Google Bigtable, and more.

Publisher

IGI Global

Reference114 articles.

1. Wavelet Denoising of Infrared Spectra

2. Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics

3. Andrews, N. O., & Fox, E. A. (2007). Clustering for Data Reduction: A Divide and Conquer Approach. Department of Computer Science, TR-07-36. Retrieved on September 7, 2016 from http://vtechworks.lib.vt.edu/handle/10919/19848

4. Apache Software Foundation. (2017a). Apache Hive. Retrieved on January 24, 2017 from http://hortonworks.com/apache/hive/

5. Apache Software Foundation. (2016). Apache Pig. Retrieved on January 24, 2017 from https://pig.apache.org/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data in Modern Chemical Analysis;Journal of Analytical Chemistry;2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3