Overview of Big-Data-Intensive Storage and Its Technologies

Author:

Segall Richard S.1,Cook Jeffrey S.2

Affiliation:

1. Arkansas State University, USA

2. Independent Researcher, USA

Abstract

This chapter deals with a detailed discussion on the storage systems for data-intensive computing using Big Data. The chapter begins with a brief introduction about data-intensive computing and types of parallel processing approaches. It also highlights the points that display how data-intensive computing systems differ from other forms of computing. A discussion on the importance of Big Data computing is put forth. The current and future challenges of storage in genomics are discussed in detail. Also, storage and data management strategies are given. The chapter's focus is then on the software challenges for storage. Storage use cases are provided like DataDirect Networks, SDSC, etc. The list of storage tools and their details are provided. A small section discusses the sensor data storage system. Then a table is provided that shows the top 10 cloud storage systems for data-intensive computing using Big Data in the world. Top 500 Big Data storage servers statistics are also displayed effectively by the images from Top500 website.

Publisher

IGI Global

Reference65 articles.

1. Achahbar, O., & Abid, M. R. (2015). The impact of virtualization on high performance computing clustering in the cloud. International Journal of Distributed Systems and Technologies, 6(4), 65-81. October. Retrieved on August 2, 2017 from https://www.researchgate.net/publication/282531800_The_Impact_of_Virtualization_on_High_Performance_Computing_Clustering_in_the_Cloud

2. Azeem, S. A., & Sharma, S. K. (2016). Study of converged infrastructure & hyper converge infrastructre as future of data centre. International Journal of Advanced Research in Computer Science. Retrieved on August 2, 2017 from http://www.ijarcs.info/index.php/Ijarcs/article/view/3476

3. Barney, B. (2017). Message Passing Interface (MPI). U.S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL). Retrieved on August 1, 2017 from https://computing.llnl.gov/tutorials/mpi/

4. Beaver, D., Kumar, S., Li, H. C., Sobel, J., & Vajget, P. (2010). Finding a needle in a haystack: Facebook’s photo storage. In Proceedings of the Ninth USENIX Conference on Operating Systems Design and Implementation (pp. 1-8). Berkeley, CA: USENIX Association. Retrieved on August 2, 2017 from https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf

5. Butler, B. (2013). Top 10 cloud storage providers according to Gartner. ComputerWorldUK, and Network World US. Retrieved on July 25, 2017 from http://www.computerworlduk.com/it-vendors/top-10-cloud-storage-providers-according-gartner-3418594/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quantum computing simulator scheme using MPI technology on cloud platform;2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3