High Performance Storage for Big Data Analytics and Visualization

Author:

Fandango Armando1,Rivera William2

Affiliation:

1. NeuraSights, USA

2. Microsoft, USA

Abstract

Scientific Big Data being gathered at exascale needs to be stored, retrieved and manipulated. The storage stack for scientific Big Data includes a file system at the system level for physical organization of the data, and a file format and input/output (I/O) system at the application level for logical organization of the data; both of them of high-performance variety for exascale. The high-performance file system is designed with concurrent access, high-speed transmission and fault tolerance characteristics. High-performance file formats and I/O are designed to allow parallel and distributed applications with easy and fast access to Big Data. These specialized file formats make it easier to store and access Big Data for scientific visualization and predictive analytics. This chapter provides a brief review of the characteristics of high-performance file systems such as Lustre and GPFS, and high-performance file formats such as HDF5, NetCDF, MPI-IO, and HDFS.

Publisher

IGI Global

Reference56 articles.

1. Progress on H5Part: a portable high performance parallel data interface for electromagnetics simulations

2. H5Part: A Portable High Performance Parallel Data Interface for Particle Simulations

3. Chapter 8 Clusterin

4. A Best Practice Analysis of HDF $$5$$ 5 and NetCDF- $$4$$ 4 Using Lustre

5. Braam, P. J., & Schwan, P. (2002). Lustre: The intergalactic file system. In Proceedings of the Ottawa Linux Symposium 2002 (pp. 50–54). Retrieved February 8, 2016 from http://www.landley.net/kdocs/mirror/ols2002.pdf#page=50

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3