Anomaly Detection in Hyperspectral Imagery

Author:

Ettabaa Karim Saheb1,Ben Salem Manel2

Affiliation:

1. Ensi University, Tunisia

2. IsitCom, Tunisia

Abstract

In this chapter we are presenting the literature and proposed approaches for anomaly detection in hyperspectral images. These approaches are grouped into four categories based on the underlying techniques used to achieve the detection: 1) the statistical based methods, 2) the kernel based methods, 3) the feature selection based methods and 4) the segmentation based methods. Since the first approaches are mostly based on statistics, the recent works tend to be more geometrical or topological especially with high resolution images where the high resolution implies the presence of many materials in the same geographic area that cannot be easily distinguished by usual statistical methods.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3