Affiliation:
1. Ibn Khaldoun University, Algeria
2. University of Sciences and Technology of Oran “Mohamed Boudiaf”, Algeria
Abstract
This chapter focuses on the monitoring and diagnosis of induction machine faults, particularly the broken rotor bars. The design of a system for monitoring, detecting, and locating incipient faults for different loads of the machine is achieved by the use of advanced intelligent techniques based on ANFIS-based neuro-fuzzy network. The knowledge base is based on indicators derived from the stator current spectral analysis of the machine which in addition has to detect and assess the number of faulty bars.
Reference16 articles.
1. Temporary short circuit detection in induction motor winding using combination of wavelet transform and neural network
2. Benouzza, N. (2006). Approche des Vecteurs de Park Appliquée à la Détection des Défauts dans les Moteurs Asynchrones à Cage d’Ecureuil (Thèse de Doctorat). Université des Sciences et de la Technologie d’Oran.
3. Benouzza, N., Benyettou, A., & Bendiabdallah, A. (2004). An Advanced PARK’s Vectors Approach for Rotor Cage Diagnosis. In Proceeding of CNGE 2004 01. Université Ibn Khaldoun de Tiaret.
4. Benouzza, N., Benyettou, A., Bendiabdellah, A., Kraloua, B., & Toumi, D. (2001). Rotor cage faults diagnosis in 3-phase induction motors, by Park's vector approach. 4th Jordanian International Electrical Electronics Engineering Conference 2001.
5. Detection of broken rotor bar faults in induction motor at low load using neural network