Optimizing Social Media Data Using Genetic Algorithm

Author:

Das Sourav1,Kolya Anup Kumar2,Das Dipankar3

Affiliation:

1. National Institute of Electronics and Information Technology (NIELIT), India

2. RCC Institute of Information Technology, India

3. Jadavpur University, India

Abstract

Twitter-based research for sentiment analysis is popular for quite some time now. This is used to represent documents in a corpus usually. This increases the time of classification and also increases space complexity. It is hence very natural to say that non-redundant feature reduction of the input space for a classifier will improve the generalization property of a classifier. In this approach, the researchers have tried to do feature selection using Genetic Algorithm (GA) which will reduce the set of features into a smaller subset. The researchers have also tried to put forward an approach using Genetic Algorithm to reduce the modelling complexity and training time of classification algorithm for 10k Twitter data based on GST. They aim to improve the accuracy of the classification that the researchers have obtained in a preface work to this work and achieved an accuracy of 87% through this work. Hence the Genetic Algorithm will do the feature selection to reduce the complexity of the classifier and give us a better accuracy of the classification of the tweet.

Publisher

IGI Global

Reference46 articles.

1. Contextual phrase-level polarity analysis using lexical affect scoring and syntactic N-grams

2. IITP: Hybrid Approach for Text Normalization in Twitter

3. IITP: Hybrid Approach for Text Normalization in Twitter

4. Feature selection with Intelligent Dynamic Swarm and Rough Set

5. Lost in translation: viability of machine translation for cross language sentiment analysis;A. R.Balamurali;International Conference on Intelligent Text Processing and Computational Linguistics,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3