Affiliation:
1. RCC Institute of Information Technology, India
Abstract
In this chapter, the importance of optimization technique, more specifically metaheuristic optimization in banking portfolio management, is reviewed. Present work deals with interactive bank marketing campaign of a specific Portugal bank, taken from UCI dataset archive. This dataset consists of 45,211 samples with 17 features including one response/output variable. The classification work is carried out with all data using decision tree (DT), support vector machine (SVM), and k-nearest neighbour (k-NN), without any feature optimization. Metaheuristic genetic algorithm (GA) is used as a feature optimizer to find only 5 features out of the 16 features. Finally, the classification work with the optimized feature shows relatively good accuracy in comparison to classification with all feature set. This result shows that with a smaller number of optimized features better classification can be achieved with less computational overhead.