Affiliation:
1. Bina Nusantara University, Indonesia
Abstract
High quality models of factors influencing rice crop yield are needed in countries where rice is a staple food. These models can help select optimal rice varieties for expected field conditions. Development of a system to help scientist track and make decisions using this data is challenging. It involves incorporation of complex data structures - genomic, phenotypic, and remote sensing - with computationally intensive statistical modeling. In this article, the authors present a web portal designed to help researchers to manage and analyze their datasets, apply machine learning to detect how factors taken together influence crop production, and summarize the results to help scientists make decisions based on the learned models. The authors developed the system to be easily accessed by the entire team including rice scientist, genetics, and farmers. As such, they developed a system on a server architecture comprised of a SQLite database, a web interface developed in Python, the Celery job scheduler, and statistical computing in R.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning management system for oil palm smallholder-owned plantations;1ST INTERNATIONAL CONFERENCE ON ACHIEVING THE SUSTAINABLE DEVELOPMENT GOALS;2023
2. Application of expert system for oil palm smallholder-owned plantations;1ST INTERNATIONAL CONFERENCE ON ACHIEVING THE SUSTAINABLE DEVELOPMENT GOALS;2023