Bayesian Localized Energy Optimized Sensor Distribution for Efficient Target Tracking

Author:

Elayaraja Alonshia S.1ORCID

Affiliation:

1. Bharathidasan University, India

Abstract

Many applications in wireless sensor networks perform localization of nodes over an extended period of time. Optimal selection algorithm poses new challenges to the overall transmission power levels for target detection, and thus, localized energy optimized sensor management strategies are necessary for improving the accuracy of target tracking. In this chapter, a proposal plan to develop a Bayesian localized energy optimized sensor distribution scheme for efficient target tracking in wireless sensor network is designed. The sensor node localization is done with Bayesian average, which estimates the sensor node's energy optimality. Then the sensor nodes are localized and distributed based on the Bayesian energy estimate for efficient target tracking. The sensor node distributional strategy improves the accuracy of identifying the targets to be tracked quickly. The performance is evaluated with parameters such as accuracy of target tracking, energy consumption rate, localized node density, and time for target tracking.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3