Adaptive Clustering Techniques and Their Applications

Author:

Hudedagaddi Deepthi P.1,Tripathy B. K.1

Affiliation:

1. VIT University, India

Abstract

With the increasing volume of data, developing techniques to handle it has become the need of the hour. One such efficient technique is clustering. Data clustering is under vigorous development. The goal of clustering is to determine the intrinsic grouping in a set of unlabeled data. Several data clustering algorithms have been developed in this regard. Data is uncertain and vague. Hence uncertain and hybrid based clustering algorithms like fuzzy c means, intuitionistic fuzzy c means, rough c means, rough intuitionistic fuzzy c means are being used. However, with the application and nature of data, clustering algorithms which adapt to the need are being used. These are nothing but the variations in existing techniques to match a particular scenario. The area of adaptive clustering algorithms is unexplored to a very large extent and hence has a large scope of research. Adaptive clustering algorithms are useful in areas where the situations keep on changing. Some of the adaptive fuzzy c means clustering algorithms are detailed in this chapter.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Threshold Based Clustering;International Journal of Information System Modeling and Design;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3