Development of Fuzzy Multi-Objective Stochastic Fractional Programming Models

Author:

Abstract

In this chapter, two methodologies for solving multi-objective linear fractional stochastic programming problems containing fuzzy numbers (FNs) and fuzzy random variables (FRVs) associated with the system constraints are developed. In the model formulation process, the fuzzy probabilistic constraints are converted into equivalent fuzzy constraints by applying chance constrained programming (CCP) technique in a fuzzily defined probabilistic decision-making situation. Then two techniques, -cut and defuzzification methods, are used to convert the model into the corresponding deterministic model. In the method of using -cut for FNs, the tolerance level of FNs is considered, and the constraints are reduced to constraints with interval coefficients. Alternatively, in using defuzzification method, FNs are replaced by their defuzzified values. Consequently, the constraints are modified into constraints in deterministic form. In the next step, the constraints with interval coefficients are customized into its equivalent form by using the convex combination of each interval. If the parameters of the objectives are triangular FNs, then on the basis of their tolerance ranges each objective is decomposed into three objectives with crisp coefficients. Then each objective is solved independently to find their best and worst values and those values are used to construct membership function of each objective. Finally, the compromise solution of multi-objective linear fractional CCP problems is obtained by applying any of the approaches: priority-based fuzzy goal programming (FGP) method, Zimmermann's approach, -connective process, or minimum bounded sum operator technique. To demonstrate the efficiency of the above-described techniques, two illustrative examples, studied previously, are solved, and the solutions are compared with the existing methodology.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3