Role of Machine Intelligence and Big Data in Remote Sensing

Author:

Murugan Suriya1,Haldorai Anandakumar2ORCID

Affiliation:

1. KPR Institute of Engineering and Technology, India

2. Sri Eshwar College of Engineering, India

Abstract

Technological advances in computing, data storage, networks, and sensors have dramatically increased our ability to access, store, and process huge amounts of data. “Big data” as a term has been the biggest trends of the last few years, leading to an elevation in research, as well as industry and government applications. The problem with current big data analysis faces any one of the following challenges: heterogeneity and incompleteness, scale, timeliness, privacy, and human collaboration. It's an undeniable fact that “data” forms the basis for geospatial industry. With technological advances in the collection, distribution, management, and access of data, there is an exponential increase in the amount of geospatial information. Computational intelligence techniques such as machine learning optimization and advanced data analytics can help make faster decisions. This chapter analyses how geospatial data is driving software and services market as a “big data challenge” and how biologically inspired techniques are effective in analyzing remote sensing data.

Publisher

IGI Global

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3