Assessment of the Contribution of Crowd Sourced Data to Post-Earthquake Building Damage Detection

Author:

Hassanzadeh Reza1,Nedovic-Budic Zorica2

Affiliation:

1. University College Dublin, Ireland

2. University of Illinois at Chicago, USA & University College Dublin, Ireland

Abstract

This paper compares the results of building damage detection based on Crowd Sourced (CS) data, image processing of remotely sensed (RS) data and predictive modelling with institutional spatial data (Spatial Data Infrastructure - SDI). In particular, it focuses on the contribution of Crowd Sourcing to detecting post-earthquake building damages, while also considering the integration of Crowd Sourced with two other data sources (RS and modelling). To simulate CS data submission following the 2003 earthquake in Bam City (Iran) a survey was administered to the population which experienced the earthquake. The results obtained from this and two other sources are compared with the Actual Earthquake (AE) data by cross-tabulation analysis and McNemar's Chi Square Test. When assessed against AE data, the average accuracy levels of assessments based on the use of RS data and CS data integrated with each RS data and predictive modelling and with both, show a statistically significant increase relative to the predictive modelling. While this research does not provide for a full assessment of the value of CS data alone and in fact finds it slightly inferior to predictive modelling, it suggests that Crowd Sourcing could be a useful source of information, especially if combined with other sources.

Publisher

IGI Global

Reference61 articles.

1. Application of high-resolution optical satellite imagery for post-earthquake damage assessment: The 2003 Boumerdes (Algeria) and Bam (Iran) Earthquakes;B. J.Adams;Multidisciplinary Center for Earthquake Engineering Research Progress and Accomplishments,2004

2. Structural Damage Assessments from Ikonos Data Using Change Detection, Object-Oriented Segmentation, and Classification Techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3