Affiliation:
1. Birla Institute of Technology, Mesra, India
Abstract
Processor scheduling is one of the thrust areas in the field of computer science. The future technologies use a huge amount of processors for execution of their tasks like huge games, programming software, and in the field of quantum computing. In hard real-time, many complex problems are solved by GPU programming. The primary concern of scheduling is to reduce the time complexity and manpower. There are several traditional techniques for processor scheduling. The performance of traditional techniques is reduced when it comes under huge processing of tasks. Most scheduling problems are NP-hard in nature. Many of the complex problems are recently solved by the GPU programming. GPU scheduling is another complex issue as it runs thousands of threads in parallel and needs to be scheduled efficiently. For such large-scale scheduling problem, the performance of state-of-the-art algorithms is very poor. It is observed that evolutionary and genetic-based algorithms exhibit better performance for large-scale combinatorial problems.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献