The Impact of the Mode of Data Representation for the Result Quality of the Detection and Filtering of Spam

Author:

Hamou Reda Mohamed1,Amine Abdelmalek2,Tahar Moulay3

Affiliation:

1. Dr. Moulay Tahar University of Saïda, Algeria

2. Dr. Moulay Taher University of Saïda, Algeria

3. University of Saïda, Algeria

Abstract

Spam is now of phenomenal proportions since it represents a high percentage of total emails exchanged on the Internet. In the fight against spam, we are using this article to develop a hybrid algorithm based primarily on the probabilistic model in this case, Naïve Bayes, for weighting the terms of the matrix term -category and second place used an algorithm of unsupervised learning (K-means) to filter two classes, namely spam and ham (legitimate email). To determine the sensitive parameters that make up the classifications we are interested in studying the content of the messages by using a representation of messages using the n-gram words and characters independent of languages (because a message may be received in any language) to later decide what representation to use to get a good classification. We have chosen several metrics as evaluation to validate our results.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3