Affiliation:
1. Indian Institute of Technology Kharagpur, India
Abstract
Data-driven modeling and optimization are now of utmost importance in computational materials research. This chapter presents the operational details of two recent algorithms EvoNN (Evolutionary Neural net) and BioGP (Bi-objective Genetic Programming) which are particularly suitable for modeling and optimization tasks pertinent to noisy data. In both the approaches a tradeoff between the accuracy and complexity of the candidate models are sought, ultimately leading to some optimum tradeoffs. These novel strategies are tailor-made for constructing models of right complexity, excluding the non-essential inputs. They are constructed to implement the notion of Pareto-optimality using a predator-prey type genetic algorithm, providing the user with a set of optimum models, out of which an appropriate one can be easily picked up by applying some external criteria, if necessary. Several materials related problems have been solved using these algorithms in recent times and a couple of typical examples are briefly presented in this chapter.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献