Dynamic Particle Swarm Optimization with Any Irregular Initial Small-World Topology

Author:

Wang Shuangxin1,Tian Guibin1,Yu Dingli2,Lin Yijiang1

Affiliation:

1. Beijing Jiaotong University, China

2. Liverpool John Moores University, UK

Abstract

It is realized that the topological structure of the particle swarm optimization (PSO) algorithm has a great influence on its optimization ability. This paper presents a new dynamic small-world neighborhood PSO (D-SWPSO) algorithm whose neighbourhood structure can be constructed with any irregular initial networks. The choice of the learning exemplar is not only based upon the big clustering coefficient and the average shortest distance for a regular network, but also based upon the eigenvalues of Laplacian matrix for irregular networks. Therefore, the D-SWPSO is a PSO algorithm based on small-world topological neighbourhood with universal significance. The proposed algorithm is tested by some typical benchmark test functions, and the results confirm that there is a significant improvement over the basic PSO algorithm. Finally, the algorithm is applied to a real-world optimization problem, the economic dispatch on the IEEE30 system with wind farms. The results demonstrate that the proposed D-SWPSO is a practically feasible and effective algorithm.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3