Solving Job Scheduling Problem in Computational Grid Systems Using a Hybrid Algorithm

Author:

Ghosh Tarun Kumar1,Das Sanjoy2

Affiliation:

1. Haldia Institute of Technology, India

2. Kalyani University, India

Abstract

Grid computing is a high performance distributed computing system that consists of different types of resources such as computing, storage, and communication. The main function of the job scheduling problem is to schedule the resource-intensive user jobs to available grid resources efficiently to achieve high system throughput and to satisfy user requirements. The job scheduling problem has become more challenging with the ever-increasing size of grid systems. The optimal job scheduling is an NP-complete problem which can easily be solved by using meta-heuristic techniques. This chapter presents a hybrid algorithm for job scheduling using genetic algorithm (GA) and cuckoo search algorithm (CSA) for efficiently allocating jobs to resources in a grid system so that makespan, flowtime, and job failure rate are minimized. This proposed algorithm combines the advantages of both GA and CSA. The results have been compared with standard GA, CSA, and ant colony optimization (ACO) to show the importance of the proposed algorithm.

Publisher

IGI Global

Reference36 articles.

1. Genetic Algorithm Based Scheduler for Computational Grids

2. Representing Task and Machine Heterogeneities for Heterogeneous Computing Systems.;S.Ali;Tamkang Journal of Science and Engineering,2000

3. Grid scheduling by bilevel programming: a heuristic approach

4. A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems

5. Nature’s heuristics for scheduling jobs on computational grids.;R.Buyya;Proceedings of 8th IEEE International Conference on Advanced Computing and Communications (ADCOM2000),2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3