Early Detection of Dementia

Author:

Xefteris Stefanos1,Konstantinidis Evdokimos1,Billis Antonis S.1,Antoniou Panagiotis E.1,Styliadis Charis1,Paraskevopoulos Evangelos1,Kartsidis Panagiotis Emmanouil1,Frantzidιs Christos A.1,Bamidis Panagiotis D.1

Affiliation:

1. Aristotle University of Thessaloniki, Greece

Abstract

Early detection and prediction of dementia through unobtrusive techniques or obtrusive tests is still in exploratory status and despite the increase of interest in recent years, many challenges remain open in designing methodologies that can accurately predict its onset. This chapter addresses the problem of the early detection of dementia from two points of view: Detection based on unobtrusive paradigms both in lab and home environments (behavioral monitoring, serious games, home based assisted living applications in telemedicine) and detection based on neuroimaging approaches. The chapter also provides information on setting up ecologically valid home labs for dementia related experiments. Consequently, the aim of this chapter is to provide an overview of a complete methodology of how researchers can possibly detect or predict the onset of dementia through the current state-of-the-art, underline open challenges and illustrate future work in the field.

Publisher

IGI Global

Reference99 articles.

1. How to search a social network

2. Leisure activities and the risk of dementia in the elderly: Results from the Three-City Study

3. Artikis, A., Bamidis, P. D., Billis, A., Bratsas, C., Frantzidis, C., Karkaletsis, V., … Spyropoulos, C. S. (2012). Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study. Retrieved July 24, 2015, from http://airtlab.dii.univpm.it/netmed2012/sites/netmed2012.dii.univpm.it/files/papers/netmed2012.pdf#page=32

4. Ashton, K. (2009). That “Internet of Things” Thing. RFiD Journal, 4986. Retrieved from http://www.itrco.jp/libraries/RFIDjournal-That Internet of Things Thing.pdf\npapers3://publication/uuid/8191C095-0D90-4A17-86B0-550F2F2A6745

5. Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3