Affiliation:
1. Jackson State University, USA
Abstract
The authors present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. They consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC), and betweenness centrality (BWC). They define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. The authors observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. They observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).