Multi-Objective Evolutionary Algorithms

Author:

Nandi A. K.1,Deb K.2

Affiliation:

1. CSIR – Central Mechanical Engineering Research Institute, India

2. Michigan State University, USA

Abstract

The primary objective in designing appropriate particle reinforced polyurethane composite which will be used as a mould material in soft tooling process is to minimize the cycle time of soft tooling process by providing faster cooling rate during solidification of wax/plastic component. This chapter exemplifies an effective approach to design particle reinforced mould materials by solving the inherent multi-objective optimization problem associated with soft tooling process using evolutionary algorithms. In this chapter, first a brief introduction of multi-objective optimization problem with the key issues is presented. Then, after a short overview on the working procedure of genetic algorithm, a well- established multi-objective evolutionary algorithm, namely NSGA-II along with various performance metrics are described. The inherent multi-objective problem in soft tooling process is demonstrated and subsequently solved using an elitist non-dominated sorting genetic algorithm, NSGA-II. Multi-objective optimization results obtained using NSGA-II are analyzed statistically and validated with real industrial application. Finally the fundamental results of this approach are summarized and various perspectives to the industries along with scopes for future research work are pointed out.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3