Comprehensible Explanation of Predictive Models

Author:

Robnik-Šikonja Marko1

Affiliation:

1. University of Ljubljana, Slovenia

Abstract

The most successful prediction models (e.g., SVM, neural networks, or boosting) unfortunately do not provide explanations of their predictions. In many important applications of machine learning the comprehension of the decision process is of uttermost importance and dominates the classification accuracy, e.g., in business and medicine. This chapter introduces general explanation methods that are independent of the prediction model and can be used with all classification models that output probabilities. It explains how the methods work and graphically explains models' decisions for new unlabelled cases. The approach is put in the context of applications from medicine, business and macro economy.

Publisher

IGI Global

Reference22 articles.

1. The Inverse Classification Problem

2. How to explain individual classification decisions.;D.Baehrens;Journal of Machine Learning Research,2010

3. Barbella, D., Benzaid, S., Christensen, J. M., Jackson, B., Qin, X. V., & Musicant, D. R. (2009). Understanding support vector machine classifications via a recommender system-like approach. In R. Stahlbock, S. F. Crone, & S. Lessmann (Eds.), International Conference on Data Mining. CSREA Press.

4. Visualizing and Interacting with Kernelized Data

5. Bohanec, M., Kljajić-Borštnar, M., & Robnik-Šikonja, M. (2015). Integration of machine learning insights into organizational learning: A case of B2B sales forecasting. In R. Bons, J. Versendaal, A. Pucihar, & M. Kljajić-Borštnar (Eds.), Proceedings of the WellBeing conference. Moderna organizacija.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3