Mining Big Data and Streams

Author:

Abdelhafez Hoda Ahmed1

Affiliation:

1. Suez Canal University, Egypt

Abstract

Mining big data is getting a lot of attention currently because the businesses need more complex information in order to increase their revenue and gain competitive advantage. Therefore, mining the huge amount of data as well as mining real-time data needs to be done by new data mining techniques/approaches. This chapter will discuss big data volume, variety and velocity, data mining techniques and open source tools for handling very large datasets. Moreover, the chapter will focus on two industrial areas telecommunications and healthcare and lessons learned from them.

Publisher

IGI Global

Reference42 articles.

1. Analysis, C. (2014). Cisco global cloud index: forecast and methodology 2013-2018. White Paper. Retrieved from https://www.terena.org/mail-archives/storage/pdfVVqL9tLHLH.pdf

2. Mining big data in real time.;A.Bifet;Infomatica.,2013

3. Bifet, A., & Gavalda, R. (2009). Adaptive Parameter-free Learning from Evolving Data Streams. IDA:Proceedings of 8th International Symposium on Intelligent data Analysis in the series lecture notes in computer science, 5772. 249-260.

4. MOA: Massive online analysis.;A.Bifet;Journal of Machine Learning Research,2010

5. Che, D., Safran, M., & Peng, Z. (2013). From Big Data to Big Data Mining: Challenges, Issues, and Opportunities. DASFAA workshops. LNCN, 7827, 1-15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3