Recurrent Neural Networks for Predicting Mobile Device State

Author:

Rodriguez Juan Manuel1,Zunino Alejandro1ORCID,Tommasel Antonela1,Mateos Cristian1

Affiliation:

1. ISISTAN, UNICEN-CONICET, Argentina

Abstract

Nowadays, mobile devices are ubiquitous in modern life as they allow users to perform virtually any task, from checking e-mails to playing video games. However, many of these operations are conditioned by the state of mobile devices. Therefore, knowing the current state of mobile devices and predicting their future states is a crucial issue in different domains, such as context-aware applications or ad-hoc networking. Several authors have proposed to use different machine learning methods for predicting some aspect of mobile devices' future states. This work aims at predicting mobile devices' battery charge, whether it is plugged to A/C, and screen and WiFi state. To fulfil this goal, the current state of a mobile device can be regarded as the consequence of the previous sequence of states, meaning that future states can be predicted by known previous ones. This work focuses on using Recurrent Neural Networks for predicting future states.

Publisher

IGI Global

Reference15 articles.

1. Long short term memory neural network for keyboard gesture decoding

2. Where and what: Using smartphones to predict next locations and applications in daily life

3. Long Short-Term Memory

4. Mining Temporal Profiles of Mobile Applications for Usage Prediction

5. Musolesi, M., Piraccini, M., Fodor, K., Corradi, A., & Campbell, A. T. (2010). Pervasive Computing: 8th International Conference, Pervasive 2010, Helsinki, Finland, May 17-20, 2010. Proceedings. Springer Berlin Heidelberg.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3