A Pattern-Mining Approach for Wearable Sensor-Based Remote Health Care

Author:

Hemalatha C. Sweetlin1,Vaidehi V.1

Affiliation:

1. VIT University, India

Abstract

Rapid advancement in Wireless Sensor Network (WSN) technology facilitates remote health care solutions without hindering the mobility of a person using Wearable Wireless Body Area Network (WWBAN). Activity recognition, fall detection and finding abnormalities in vital parameters play a major role in pervasive health care for making accurate decision on health status of a person. This chapter presents the proposed two pattern mining algorithms based on associative classification and fuzzy associative classification which models the association between the attributes that characterize the activity or health condition and handles the uncertainty in data respectively for an accurate decision making. The algorithms mine the data from WWBAN to detect abnormal health status of the person and thus facilitate remote health care. The experimental results on the proposed algorithms show that they work par with the popular traditional algorithms and predicts the activity class, fall or health status in less time compared to existing traditional classifiers.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3