Sustainable Design of Photovoltaics

Author:

Putz Mihai V.1,Tudoran Marina A.1,Mirica Marius C.2,Iorga Mirela I.2,Bănică Radu2,Novaconi Ștefan D.2,Balcu Ionel2,Rus Ștefania F.2,Putz Ana-Maria3

Affiliation:

1. West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania

2. Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timișoara, Romania

3. Institute of Chemistry Timișoara of Romanian Academy, Romania & West University of Timișoara, Romania

Abstract

With the ever present-to-future need of renewable energy the main features of photo-electrochemistry processes are reviewed and described from the perspective of devices phenomenology serving to sustainable design of photovoltaics, while providing the quantum insight in terms of data observability and interpretation. At the same time, the photovoltaic cell “enriched” with quantum dots is presented as a “milestone for obtaining green energy”, a perspective opened by the developing of recent nanotechnology. Nevertheless, this new approach is referring to both theoretical and experimental aspects, both equally needed in order to find a way to develop efficient and ecological photovoltaic devices. Finally, bondonic information for molecules activated in mesoscopic scale are determined while combining their FT-IR spectra with photovoltaic fill factor and metrological quantum triangle (electron tunneling, Josephson effect and quantum Hall effect) towards challenging new perspective of sub-quantum interaction in condensed nano-matter.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bondonic Electrochemistry;Sustainable Nanosystems Development, Properties, and Applications;2017

2. Bondonic Electrochemistry;Renewable and Alternative Energy;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3