Motor Imagery Classification Using EEG Signals for Brain-Computer Interface Applications

Author:

Mazumdar Subrota1,Chaudhary Rohit1,Suruchi Suruchi1,Mohanty Suman1,Kumari Divya1,Swetapadma Aleena1

Affiliation:

1. Kalinga Institute of Industrial Technology University, India

Abstract

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.

Publisher

IGI Global

Reference19 articles.

1. Filterbank common spatial pattern algorithm on BCI competition IV Datasets2a and 2b.;K.Ang;Frontiers in Neuroscience,2012

2. Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method

3. BBCI. (n.d.). BCI Competition IV. Retrieved from http://www.bbci.de/competition/iv/#dataset1

4. Adaptive soft k-nearest-neighbour classifiers

5. Nearest neighbor pattern classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3