Automated Method of Analysing Sputum Smear Tuberculosis Images Using Multifractal Approach

Author:

Priya Ebenezer1,Subramanian Srinivasan2

Affiliation:

1. Sri Sairam Engineering College, India

2. Anna University, India

Abstract

In this chapter, an attempt has been made to automate the analysis of positive and negative Tuberculosis (TB) sputum smear images using multifractal approach. The smear images (N=100) recorded under standard image acquisition protocol are considered. The images are subjected to multifractal analysis and the corresponding spectrum parameters are extracted. Most significant parameters are selected based on the principal component analysis. Further, these parameters are subjected to classification using support vector machine classifier with different kernels. Results demonstrate that the multifractal analysis is capable of discriminating positive and negative TB images. The values of apex, broadness and aperture of the singularity spectrum are higher for TB positive than negative images and are statistically significant. The performance estimators obtained in the classification process show that the polynomial kernel performs better. It appears that this method of texture analysis could be useful for automated analysis of TB using digital sputum smear images.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning technique-based diagnosis of wrist-radial pulse;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

2. A machine learning approach to control a Prosthetic arm via signals from residual limb - A boon for amputees;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

3. A portable spirometer using machine learning approach;2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS);2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3