A Data Mining Framework for Forest Fire Mapping

Author:

Toujani Ahmed1,Achour Hammadi2

Affiliation:

1. Silvopastoral Institute of Tabarka, Tunisia & LTSIRS Laboratory, University of Tunis El Manar, Tunisia

2. Silvopastoral Institute of Tabarka, Tunisia

Abstract

Forest fires constitute the major reasons for the loss of biodiversity and degradation of ecosystems. Locally, forest fires are one of the major natural risks in the Kroumirie mountains, northwestern Tunisia. In these massifs, fires occur frequently, and this requires understanding the complex biophysical parameters of this phenomenon. The special attention of the research is paid to the spatial forecasting of forest fires. Different types of classical frequent itemset algorithms have been tested and employed to reveal forest fire patterns that relate the spatial parameters with the probability of fire occurrence. Extracted frequent patterns are then being aggregated through a defined measurement of pertinence. The forest fire risk zone maps are then generated, resulting in extracted spatial patterns. The experiments showed that, the integration of these patterns into GIS could be advantageous to determine risky places and able to produce good prediction accuracy.

Publisher

IGI Global

Reference48 articles.

1. Fast algorithms for mining association rules.;R.Agrawal;20th International Conference on Very Large Data Bases, Washington,1994

2. Angayarkkani, K., & Radhakrishnan, N., (2010). An Intelligent System For Effective Forest Fire Detection Using Spatial Data. International Journal of Computer Science and Information Security, 7(1).

3. Ben Jemaa, M.H., & Hasnaoui, B., (1996). Le dépérissement du chêne-liège en Tunisie. Ann. Rech Forest. Maroc, 1-10.

4. Borgelt, C. (2009). SaM: Simple Algorithms for Frequent Item Set Mining. IFSA/EUSFLAT 2009 Conference.

5. Boussaidi, N. (2009). Impacts de l'action anthropique sur la subéraie tunisienne: essai de projection dans le futur d'un écosystème. Thèse de doctorat à l'Institut National Agronomique de Tunisie.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction of Artificial Intelligence;Digital Innovations in Architecture, Engineering and Construction;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3