An Innovative Design of RF Energy Harvester for Wireless Sensor Devices

Author:

Agrawal Pankaj1,Tiwari Akhilesh2,Singh Uday Pratap2

Affiliation:

1. Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, India

2. Madhav Institute of Technology and Science, India

Abstract

Due to growing demand of energy, green technologies are highly attractive among researchers because of their non-conventional nature. Energy harvesting is one of their best parts. Very low cost of maintenance and non-polluting nature are major reasons behind their growing demand. However, for ultra-low power applications, such as in wireless sensor devices, the energy scavenging from RF signal is another alternative. In the last few years, a great interest has been seen in microwave power scavenging for charging wireless devices. This chapter presents a RF energy harvesting circuit with tuned π-matching network that resonates at desired incident RF frequency to boost these signals. Various computer intelligent techniques have been used to optimize parameters value of matching circuit. The designed circuit has been analyzed for input power range from -30 dBm to 0 dBm. Approximately 80% maximum PCE is achieved at RF input of 0 dBm with 4 KΩ load. It is also demonstrated that better output power is produced for power range -15 dBm to 0 dBm at higher load values.

Publisher

IGI Global

Reference91 articles.

1. Wide power range RF energy harvesting circuit

2. Effect of matching network on ambient RF energy harvesting circuit for wireless sensor networks.;P.Agrawal;International Journal of Current Engineering & Scientific Research,2016

3. RF energy harvesting system design for wireless sensors

4. Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna

5. RF energy harvesting system from cell tower in 900 Mhz band.;M.Arrawatia;National Conference on Communications (NCC),2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3