Minimum Database Determination and Preprocessing for Machine Learning

Author:

Kuri-Morales Angel Fernando1

Affiliation:

1. ITAM, Mexico

Abstract

The exploitation of large databases implies the investment of expensive resources both in terms of the storage and processing time. The correct assessment of the data implies that pre-processing steps be taken before its analysis. The transformation of categorical data by adequately encoding every instance of categorical variables is needed. Encoding must be implemented that preserves the actual patterns while avoiding the introduction of non-existing ones. The authors discuss CESAMO, an algorithm which allows us to statistically identify the pattern preserving codes. The resulting database is more economical and may encompass mixed databases. Thus, they obtain an optimal transformed representation that is considerably more compact without impairing its informational content. For the equivalence of the original (FD) and reduced data set (RD), they apply an algorithm that relies on a multivariate regression algorithm (AA). Through the combined application of CESAMO and AA, the equivalent behavior of both FD and RD may be guaranteed with a high degree of statistical certainty.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3