Fog Caching and a Trace-Based Analysis of Its Offload Effect

Author:

Zhanikeev Marat1

Affiliation:

1. Tokyo University of Science, Japan

Abstract

Many years of research on Content Delivery Networks (CDNs) offers a number of effective methods for caching of content replicas or forwarding requests. However, recently CDNs have aggressively started migrating to clouds. Clouds present a new kind of distribution environment as each location can support multiple caching options varying in the level of persistence of stored content. A subclass of clouds located at network edge is referred to as fog clouds. Fog clouds help by allowing CDNs to offload popular content to network edge, closer to end users. However, due to the fact that fog clouds are extremely heterogeneous and vary wildly in network and caching performance, traditional caching technology is no longer applicable. This paper proposes a multi-level caching technology specific to fog clouds. To deal with the heterogeneity problem and, at the same time, avoid centralized control, this paper proposes a function that allows CDN services to discover local caching facilities dynamically, at runtime. Using a combination of synthetic models and real measurement dataset, this paper analyzes efficiency of offload both at the local level of individual fog locations and at the global level of the entire CDN infrastructure. Local analysis shows that the new method can reduce inter-cloud traffic by between 16 and 18 times while retaining less than 30% of total content in a local cache. Global analysis further shows that, based on existing measurement datasets, centralized optimization is preferred to distributed coordination among services.

Publisher

IGI Global

Reference31 articles.

1. Measurement Study of Netflix, Hulu, and a Tale of Three CDNs

2. A Novel Approach to Address Interoperability Concern in Cloud Computing

3. BBC. (2012). The story of the digital Olympics: streams, browsers, most watched, four screens (blog post). Retrieved from http://www.bbc.co.uk/blogs

4. QoE-driven in-network optimization for Adaptive Video Streaming based on packet sampling measurements.;N.Bouten;International Journal of Computer and Telecommunications Networking,2015

5. Content Delivery Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3