Integrated in Silico Methods for the Design and Optimization of Novel Drug Candidates

Author:

Minovski Nikola1,Novič Marjana1ORCID

Affiliation:

1. National Institute of Chemistry, Slovenia

Abstract

Although almost fully automated, the discovery of novel, effective, and safe drugs is still a long-term and highly expensive process. Consequently, the need for fleet, rational, and cost-efficient development of novel drugs is crucial, and nowadays the advanced in silico drug design methodologies seem to effectively meet these issues. The aim of this chapter is to provide a comprehensive overview of some of the current trends and advances in the in silico design of novel drug candidates with a special emphasis on 6-fluoroquinolone (6-FQ) antibacterials as potential novel Mycobacterium tuberculosis DNA gyrase inhibitors. In particular, the chapter covers some of the recent aspects of a wide range of in silico drug discovery approaches including multidimensional machine-learning methods, ligand-based and structure-based methodologies, as well as their proficient combination and integration into an intelligent virtual screening protocol for design and optimization of novel 6-FQ analogs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3