Fuzzy Multi-Objective Association Rule Mining Using Evolutionary Computation

Author:

Pradeep Ganghishetti1,Ravi Vadlamani2

Affiliation:

1. IDRBT, India

2. Institute for Development and Research in Banking Technology, India

Abstract

In this chapter, we model association rule mining as a Fuzzy multi-objective global optimization problem by considering several measures of strength such as support, confidence, coverage, comprehensibility, leverage, interestingness, lift and conviction by utilizing various fuzzy aggregator operators. In this, pdel, each measure has its own level of significance. Three fuzzy multi-objective association rule mining techniques viz., Fuzzy Multi-objective Binary Particle Swarm Optimization based association rule miner (FMO-BPSO), a hybridized Fuzzy Multi-objective Binary Firefly Optimization and Threshold Accepting based association rule miner (FMO-BFFOTA), hybridized Fuzzy Multi-objective Binary Particle Swarm Optimization and Threshold Accepting based association rule miner (FMO-BPSOTA) have been proposed. These three algorithms have been tested on various datasets such as book, food, bank, grocery, click stream and bakery datasets along with three fuzzy aggregate operators. From these experiments, we can conclude that Fuzzy-And outperforms all the other operators.

Publisher

IGI Global

Reference42 articles.

1. Mining association rules between sets of items in large databases

2. Fast algorithms for mining association rules.;R.Agrawal;Proceedings of the 20th International Conference on VLDB Conference,1994

3. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules

4. Anandhavalli, M., Kumar, S.S., Kumar, A., & Ghose, M. K. (2009). Optimized association rule mining using genetic algorithm. Advances in Information Mining, 1-4.

5. New binary PSO based method for finding best thresholds in association rule mining.;A.Asadi;Applied Soft Computing,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3